首页> 外文OA文献 >Phase transitions in semidefinite relaxations
【2h】

Phase transitions in semidefinite relaxations

机译:半确定弛豫中的相变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems.
机译:信号处理,数据挖掘和机器学习中出现的统计推断问题自然会引起组合优化难题。当数据的维数很大时,这些问题变得棘手,这对于现代数据集通常是这样。一个流行的想法是构造这些组合问题的凸松弛,这对于大型数据集可以有效解决。半定型编程(SDP)松弛是该系列中最强大的方法之一,并且令人惊讶地非常适合于其中数据采用矩阵或图形形式的各种问题。数次观察到,当统计噪声足够小时,SDP弛豫可正确检测到潜在的组合结构。在本文中,我们为几个检测阈值以及高于这些阈值的估计误差开发了渐近预测。我们研究了一些经典的SDP松弛,以解决网络中图同步和社区检测所引发的统计问题。我们将这些优化问题映射到具有矢量自旋的统计力学模型,并使用统计力学中的非严格技术来表征相应的相变。我们的结果阐明了SDP松弛在解决高维统计问题中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号